

CORSO DI LAUREA IN INGEGNERIA ELETTRONICA E DEI SISTEMI CIBERFISICI BACHELOR IN ELEKTROTECHNIK UND CYBERPHYSISCHEN SYSTEMEN

Contenuto degli insegnamenti Inhalt der Lehrveranstaltungen

Primo anno /	Erstes Jahr
Math	ematical Analysis I (I year, I semester, 9 CFU)
•	Elements of set theory, number sets and properties of real numbers.
•	Real functions of one real variable: elementary functions, graphs and operations on graphs, composition and inversion.
•	Sequences and limits for sequences.
•	Limits and continuity of functions.
•	Infinite and infinitesimal functions: Landau symbols and rate of convergence.
•	Differential calculus and study of a function's graph.
•	Taylor expansions.
•	Antiderivatives and integral calculus for functions of one real variable.
•	Improper integrals.
Math	ematical Analysis II (I year, II semester, 9 CFU)
•	Real functions of several real variables, limits, and continuity, partial derivatives and differentiability.
•	Elements of differential calculus for functions of several variables: Taylor's theorem, free and constrained maxima and minima, and critical points.
•	Differential calculus for vector functions.
•	Curvilinear integrals of scalar functions.
•	Curvilinear integrals of vector fields.
•	Double integrals.
•	Triple integrals.
•	Surface integrals. Gauss, Green, and Stokes theorems
•	Elements of ordinary differential equations.

Linear Algebra (I year, I semester, 9 CFU)

- Vector spaces and their operations. Spaces R^n. Bases. Scalar product and norm.
- Matrices and their operations. Inverse matrix transposed and conjugate matrix and their properties.
- Linear systems. Matrix form, homogeneous case. Dimension of the solution space, Gauss triangulation method. Linear dependence and independence of vectors.
- Determinant and rank. Recursive definition, Laplace rule, properties. Rank of a matrix. Rouchè-Capelli theorem.
- Linear transformations in Rⁿ. Kernel, image. Eigenvalues and eigenvectors. Isometries and homotheties in R².
- Geometry of space. Vector product, mixed product. Cartesian equation of a plan in space. Cartesian
 and parametric equation of a straight line in space. Skew lines.
- Complex numbers. Properties and operations in the complex field.
- Trigonometric form of complex numbers. N-roots of complex numbers. Equations in a complex variable.
- Representation of linear operators in different bases. Quadratic forms and their diagonalization. LU and QR decomposition, Gram-Schmidt orthogonalization method (also with the use of a software).

Physics I (I year, I semester, 6 CFU)

- Measurement and vectors: units of measurement, dimensions of physical quantities, mathematical operations with vectors.
- Kinematics: mean and instantaneous velocity and acceleration, uniformly accelerated motion.
- Dynamics: Newton's three axioms, work, energy, law of conservation of energy, linear momentum.
- Rotation: angular displacement, mean and instantaneous angular velocity and acceleration, torque, moment of inertia, angular momentum
- Thermodynamics: thermal expansion, kinetic theory of gases, heat, ideal gases, first and second law, circular processes, entropy.

Fundamentals of Programming (I year, 12 CFU)

1. Module 1: Fundamentals of Programming (I year, I semester, 6 CFU)

- Introduction to hardware and software, with computer organisation; data hierarchy; machine languages, assembly languages, high-level programming languages.
- Introduction to Python: interactive mode, script mode, Jupyter.
- Introduction to different programming paradigms, focusing on the structured programming paradigm.
- Structured programming: basic data types, variables, constants, operators and expressions; standard input/output handling; control flow structures; file and error handling.
- Basic data structures/types of Python: (1) lists, (2) dictionaries, (3) tuples, (4) sets.
- Subroutines and functions in Python (with/without parameters; with/without return); functions and basic recursion in Python, e.g., some combinatorics.
- Basics of computational thinking to solve a computational problem and program a resolution in Python and Python-based languages, via physical-computing boards.

2. Module 2: Fundamentals of Programming II (I year, II semester, 6 CFU)

- Introduction
- Memory management and activation record.
- Introduction to software development.
- Software development toolchain.
- Tools to support modern software development (IDEs; software management tools: DVCS and cloud-based tools).
- Debugging and software testing (debugging tools; writing safe and secure programs; type checking).

Physi	cs 2 (I year, II semester, 9 CFU)
•	Electrostatics (charge; coulomb; electric field; electric potential; capacity; dielectrics; permittivity
•	Electrical current (Ohm's law; resistance; Joule's effect; power; direct/alternating current; electric
	circuits; Kirchhoff's laws).
•	Magnetostatics (magnetostatic field; magnetic induction; Lorentz's forces; Ampère's law
	magnetic dipoles; magnetic energy).
•	Dynamic electromagnetism (Faraday-Lenz; self-induction).
•	Electromagnetic waves (Maxwell's equation; light propagation; polarization of electromagne
	waves).
•	Photonics: optical phenomena (optics, refraction, interference), introduction to photonic devices
•	Introduction to quantum mechanics.
Basics	of Electronics (I year, II year, 6 CFU)
•	Fundamentals of electrical engineering: electrical quantities, concept of bipole and quadripol
	ideal and real generators; Kirchhoff's laws.
•	Adynamic bipoles and circuits: resistive bipoles; Ohm's law; Thevenin's and Norton's models; not
	analysis of circuits, superposition principle.
•	Bipoles and dynamic circuits: dynamic bipoles; first and second order circuits.
•	Analysis of sinusoidal circuits: superposition, multi-frequency circuits; Thevenin and North
	models; nodal analysis; power.
•	Biport: elements; connections; analysis of biport circuits in both adynamic and sinusoidal regime
•	Operational amplifiers: principles; connections; analysis of circuits with operational amplifiers
•	both adynamic and sinusoidal regimes.

Secondo anno / Zweites Jahr
 Algorithms and Programming (II year, I semester, 6 CFU) Searching and sorting. Analysis of algorithms: correctness and complexity. Algorithm techniques: divide and conquer, recurrences. Elementary data structures: Pointers, dynamic data structures, linked lists. Abstract data types: stacks, queues, priority queues, maps. Binary trees, red-black trees, elementary graph algorithms.
 Electronic Devices (II year, I semester, 9 CFU) Semiconducting materials. Semiconductor fabrication and characterization techniques. PN junctions and diodes. Transistors (MOSFETs; MESFETs; heterojunction transistors) Memories (DRAM; SRAM; Flash; resistive). Sensors (physical; chemical; biological sensors). Photonic devices (LEDs; lasers; photodiodes; solar cells). Passive electronic components (antennas; batteries). Internet-of-things and sensor networks.
 Fundamentals of Systems and Control (II year, I semester, 6 CFU) Dynamic response of first and second order systems. Stability of linear systems. Root-locus stability analysis. Dynamic system modelling in frequency domain. Frequency-response stability analysis and control design methods. Digital control systems (time permitting). Computer-aided analysis and design.
 Fundamentals of Statistics (II year, I semester, 9 CFU) Fundamentals of probability and probability spaces. Random variables and probability distributions. Moments of a random variable. Functions of a random variable. Bivariate random variables. Sequences of random variables an limit theorems. Populations, samples and sampling distributions. Random sampling. Fundamentals of parametri statistical inference. Point estimation and interval estimation. Fundamentals of hypothesis testing. Tests for the mean and the variance. Chi-squared type test for contingency tables. Estimation methods and distance measures between distributions. Method of moments Maximum likelihood; Least squares. The linear regression model. Assumptions and parameter estimation. Hypothesis testing an confidence intervals for the parameters of the model. Model selection, goodness of fit, residuals analysis and diagnostics. Violation of the assumption and some extensions of the model.

M	odern Control (II year, II semester, 9 CFU)
	 Modelling and system analysis in state space (dynamic system modelling in time domain and state-space representation).
	Dynamic system response derived from state-space representation and steady-state error.
	Stability in state space.
	Control design in state space (Pole placement design techniques; controllability, observability,
	full-state observers).
	 Optimal control of dynamic systems (Problems with fixed and variable end-points as well as with
	equality and inequality constraints; maximum principle and Hamilton-Jacobi-Bellmann equation; linear quadratic regulator).
	 Understanding of observers in control systems.
	 Understanding of optimal state observers and Kalman filters.
	Computer-aided analysis and design using Matlab/Simulink.
	• Implementation of controllers and experimental evaluation on real-hardware setups.
0	perating Systems and networks (II year, II semester, 12 CFU)
	Module 1: Operating and real-time systems (II year, II semester, IZ CI C)
	 Operating systems principles.
	Real time systems principles.
	Multi-programming, multi-tasking.
	Scheduling and management of processes.
	Communication and synchronization.
	Memory management.
2.	Module 2: Networks of electronic devices (II year, II semester, 6 CFU)
	 Introduction to technology trends (e.g., embedded processors; miniaturized sensors; new materials; ubiquitous computing characteristics and systems).
	 Sensor characteristics and fundamentals (e.g., sensitivity; offset, accuracy, dynamic range,
	linearity; conditioning; filtering; ADC/DAC).
	• Mobile ad-hoc networks and routing protocols (e.g., flooding; distance vector routing; DSDV
	Routing; DSR and zone routing).
	• Wireless Communication Technologies (e.g., WLAN/IEEE 802.11; Bluetooth/IEEE 802.15.1,
	ZigBee/IEEE 802.15.4; RFID; NFC).
	 Wireless sensor networks (e.g., communication architecture, sensor nodes etc.). Machine-to-machine protocols in the cloud, e.g., MQTT and HTTPs.
	 Further data representations and protocols for sensor and control data with a focus on OSC (open
	sound control) that allows developers to implement a sensor that communicates with 3rd party
	applications and framework (e.g., MATLAB, Grasshopper, Unity etc.).
	Electronic Circuit Design (II year, II semester, 6 CFU)
	Diodes: models, rectifier circuits, linear power supplies, diode-based voltage regulators, limiting
	and clamping circuits.
	Op Amps: the ideal Op Amp, the inverting and non-inverting configurations, difference openicipations integrations and differentiateurs on Amp filtere and non-inverting configurations.
	 amplifiers, integrators and differentiators, Op Amp filters and non-idealities. MOSFET and BJT models: physical structure, I-V model, C-V model, parasitic capacitances and
	 MOSFET and BJT models: physical structure, 1-V model, C-V model, parasitic capacitances and resistances, small-signal models, p-channel MOSFET, pnp BJT.
	 Transistor amplifiers: basic principles, basic configurations, biasing networks, discrete-circuit and
	IC amplifiers. Differential amplifiers: differential pair, common-mode rejection, DC offset,
	differential amplifiers.
	• Frequency response: low- and high-frequency responses, approximate analysis methodologies,
	high-frequency response of MOSFET amplifiers.
	• Digital logic circuits: binary representation of information, elements of Boolean algebra,
	combinatorial logic. CMOS logic circuit topologies, dynamic operation, and power dissipation

Electroni	c Systems (III year, I semester, 6 CFU)
•	Programmable logic devices (taxonomy; PLC; FPGA: introduction, interconnection resources, I/C
	reconfigurable blocks, programming; design flow; principles of design, Verilog, system Verilog an
	VHDL).
•	Power supply generation and distribution, heat management, switching mode power supply, linea
	regulators. Interference between analog and digital and how to avoid them. Signals and bus signal
	distribution; crosstalk, glitch, debounce. Clock generation and distribution.
•	System on chip, system in package, system on module concept and applications. Input and output
	devices and high-speed interfaces (PCI-Express, LVDS, SerDes, USB3, ETH).
•	Sensors in IoT systems.
•	RF transmission concepts: WiFi 802.11x, Bluetooth, LoRa, Zigbee, LTE, 3G, 5G, NBIot. Modulation
	technique, FSK, PSK, OOK, M-QAM.
•	New technical trends (IoT systems; neuromorphic and in-memory systems).
Robot Co	ntrol (III year, I semester, 6 CFU)
	Robot kinematics and dynamics.
•	Trajectory planning.
•	Motion control.
•	Interaction control.
•	Vision-based control.
•	Remote control.
•	Computer-aided simulation and design.
Compute	er Architecture (III year, I semester, 6 CFU)
•	Sequential logic circuits (flip-flop and latches; registers and shift registers; counters; design o
·	sequential circuits from state machines).
•	General computer architecture (Von Neumann architecture; CPUs; bus; memory; peripherals)
•	Instruction set architecture (CISC vs RISC architecture; instructions: data-movement, control-flow
	arithmetic/logic; common ISAs: introduction to x86, ARM, RISC-V; assembly programming).
•	CPU architecture (control unit, registers, ALU; fetch-decode-execute cycle; pipelining; super-scala
	architecture; branch prediction; out-of-order execution; caches).
•	Memory and buses (static vs dynamic memory; serial/parallel buses; synchronous/asynchronou
	buses; bus arbitration strategies; example of buses: PCI, PCI-Express, USB).
•	Other topics (multi-processor and multi-core architectures; introduction to GPUs).
Artificial	Intelligence and Machine Learning (III year, I semester, 9 CFU)
•	Artificial intelligence and agents.
•	Search space exploration.
•	Automated planning.
•	Data analysis.
•	Model selection.
•	Supervised learning.
•	Unsupervised learning.
•	Reinforcement learning.
•	Elements of deep learning.
Economia	cs and Management (III year, I semester, 6 CFU)
•	The company: objectives and context (basic concepts; classifications of companies; value chain;
	vision and mission; Porter's generic strategies; strategy tools).
•	Essentials of financial accounting (accounting principles; balance sheet and income statement;
	financial statement preparation; ratio analysis).
•	Investment analysis (actualization and capitalization; discounted payback period; net present
	value; internal rate of return). Other economic evaluation analyses (classification of costs; break-even point; make or buy
	UTHER ECODOMIC EVAILATION ANALYSES (CLASSIFICATION OF COSTS' NEAR-EVEN NOINT' MAKE OF NUV

choices).