Semester 2 · 27502 · Master in Data Analytics for Economics and Management · 12CP · EN
Lecturers: Alessandro Casa
Teaching Hours: M1: 36 hours
M2: 40 hours
Lab Hours: M1: 18 hours
M2: 20 hours
Mandatory Attendance: Recommended, but not required.
M1:
James, G., Witten, D., Hastie, T., Tibshirani, R. An Introduction to Statistical Learning with Applications in R. Springer, 2013. Freely available at http://www- bcf.usc.edu/~gareth/ISL/
Slides and lecture notes provided
M2:
Randall Pruim, 2018, Foundations and Applications of Statistics An Introduction Using R. American Mathematical Society, Providence. ISBN 9781470428488. From this book we discuss topics from chapters 4 and 5.
Robert Shumway and David Stoffer, 2019. Time Series: A Data Analysis Approach Using R. CRC Press, Boca Raton. ISBN 9780367221096. From this book we discuss chapters 1 to 4 and some optional topics from chapters 5 and 8.
M1:
Bishop, C. M. (2006). Pattern recognition and machine learning. New York: Springer.
Agresti, A., Finlay, B. Statistica per le scienze sociali, Pearson, 2009.
Hyndman, R.J. and Athanasopoulos, G. Forecasting: principles and practice, 2nd edition, OTexts: Melbourne, 2018.
Cicchitelli, Giuseppe. Statistica. Principi e metodi. Pearson, 2008.
Azzalini, Adelchi, and Bruno Scarpa. Data analysis and data mining: An introduction. OUP USA, 2012.
Grigoletto, Matteo, Laura Ventura, and Francesco Pauli. Modello lineare: teoria e applicazioni con R. G Giappichelli Editore, 2017.
Johnson, Richard A., and Dean W. Wichern. "Applied multivariate statistical analysis." New Jersey 405 (1992).
M2:
Additional material and readings provided in class by the lecturer.
Sustainable Development Goals
This teaching activity contributes to the achievement of the following Sustainable Development Goals.
Semester 2 · 27502A · Master in Data Analytics for Economics and Management · 6CP · EN
Lecturers: Alessandro Casa
Teaching Hours: 36
Lab Hours: 18
James, G., Witten, D., Hastie, T., Tibshirani, R. An Introduction to Statistical Learning with Applications in R. Springer, 2013. Freely available at http://www- bcf.usc.edu/~gareth/ISL/
Slides and lecture notes provided
Bishop, C. M. (2006). Pattern recognition and machine learning. New York: Springer.
Agresti, A., Finlay, B. Statistica per le scienze sociali, Pearson, 2009.
Hyndman, R.J. and Athanasopoulos, G. Forecasting: principles and practice, 2nd edition, OTexts: Melbourne, 2018.
Cicchitelli, Giuseppe. Statistica. Principi e metodi. Pearson, 2008.
Azzalini, Adelchi, and Bruno Scarpa. Data analysis and data mining: An introduction. OUP USA, 2012.
Grigoletto, Matteo, Laura Ventura, and Francesco Pauli. Modello lineare: teoria e applicazioni con R. G Giappichelli Editore, 2017.
Johnson, Richard A., and Dean W. Wichern. "Applied multivariate statistical analysis." New Jersey 405 (1992).
Semester 2 · 27502B · Master in Data Analytics for Economics and Management · 6CP · EN
Teaching Hours: 40
Lab Hours: 20
Randall Pruim, 2018, Foundations and Applications of Statistics An Introduction Using R. American Mathematical Society, Providence. ISBN 9781470428488. From this book we discuss topics from chapters 4 and 5.
Robert Shumway and David Stoffer, 2019. Time Series: A Data Analysis Approach Using R. CRC Press, Boca Raton. ISBN 9780367221096. From this book we discuss chapters 1 to 4 and some optional topics from chapters 5 and 8.
Additional material and readings provided in class by the lecturer.