Skip to content

Freie Universität Bozen

Statistical Methods for Business Analysis

Semester 2 · 25559 · Master in Unternehmensführung und Innovation · 6KP · EN


This course begins with a review of key principles of statistical inference and then introduces core concepts in statistical learning. Topics include linear regression and its extensions, advanced regression techniques such as decision trees, logistic regression, classification methods, model selection strategies, and unsupervised learning approaches like principal component analysis and clustering. Throughout the course, students will work hands-on in R, applying techniques to real-world datasets drawn from business scenarios. By the end, students will be able to choose suitable statistical models, apply them to a range of business problems, and effectively communicate their analytical insights.

Lehrende: Alessandro Casa, Giulia Bertagnolli

Vorlesungsstunden: 36
Laboratoriumsstunden: 18

Themen der Lehrveranstaltung
- Überblick über die statistische Inferenz: Zufallsvariablen, Konfidenzintervalle und Hypothesentests. - Einführung in statistische Lernkonzepte: Grundlegendes Vokabular und Begriffe, parametrische und nichtparametrische Ansätze, Vorhersage- und Schlussfolgerungsziele, Verzerrungs-Varianz-Abgleich, überwachtes und unüberwachtes Lernen - Lineare Regression und Erweiterungen: einfache und multiple lineare Regression, Modellschätzung und -bewertung, Modellannahmen, Schlussfolgerungswerkzeuge, qualitative Prädiktoren, Interaktionseffekte, polynomiale Regression, Grundbegriffe der nichtparametrischen Regression - Klassifikation: Einführung in die Klassifikation, logistische Regression, Modellschätzung, Bewertung von Klassifikatoren - Andere überwachte Lerntechniken: Bäume, Splines, additive Modelle - Modellauswahl/-bewertung und Bewertung der Modellkomplexität: Resampling-Methoden, Kreuzvalidierung und Informationskriterien - Unüberwachtes Lernen: Clustering-Tools wie k-means und hierarchisches Clustering, Hauptkomponentenanalyse - Anwendungen mit der Software R

Unterrichtsform
In-person lectures and computer labs. Whenever possible, lectures will be structured to prioritize in-class time for discussions, and practical applications.

Bildungsziele
INTENDED LEARNING OUTCOMES (ILO) ILO 1: KNOWLEDGE AND UNDERSTANDING ILO 1.a The student acquires advanced knowledge and understanding of the theories and tools for the economic analysis of business decisions; ILO 1.b The student acquires knowledge and understanding of the theories and tools of statistical analysis for making market forecasts; ILO 1.c The student acquires advanced knowledge and understanding of business analysis tools and solutions for the development of innovations and organisational knowledge; ILO 1.d The student acquires knowledge of quantitative models for the formulation of forecasts necessary to guide management decisions and to predict the life cycle of a product and a sector. ILO2: ABILITY TO APPLY KNOWLEDGE AND UNDERSTANDING ILO 2.a Ability to acquire and select information that may be relevant from an entrepreneurial point of view, also in economic-productive contexts different from those studied; ILO 2.b Ability to select business economics models, suitable for the appropriate analysis of a specific economic-social and productive context; ILO 3: AUTONOMY OF JUDGEMENT ILO 3.a Acquire the ability to make predictions, such as analysing the future consequences of entrepreneurial, managerial and operational choice; ILO 3.b Autonomy of judgement is developed in the training activities carried out for the preparation of the thesis, as well as in the exercises that accompany the lectures and that involve group discussions and the comparison of individual analyses carried out by students in preparation for the lecture. ILO 4: COMMUNICATION SKILLS ILO 4.a Acquire the ability to describe and communicate in an intercultural context, in a clear and precise manner, problematic situations typical of the management of a new enterprise and the development of innovation, such as, for example, the conditions for the validation of a problem or solution, the prospects and risks associated with a business model or an innovation project. The development of communication competences assumes heterogeneous situations such as, for example, the presence of internal stakeholders (e.g. colleagues, managers, owners), or external stakeholders (e.g. potential investors, suppliers and other business partners) and the ability to sustain an adversarial process; ILO 4.b The achievement of these objectives is assessed in the course of the training activities already mentioned, as well as in the discussion of the final thesis. ILO 5: LEARNING SKILLS ILO 5.a Acquire the ability to study independently, to prepare summaries; ILO 5.b Acquire the ability to identify thematic connections and to establish relationships between different cases and contexts of analysis; ILO 5.c Acquire the ability to frame a new problem systematically and to generate appropriate taxonomie; ILO 5.d Acquire the ability to develop general models from the phenomena studied.

Art der Prüfung
Assessment (for both attending and non-attending students): - Written Exam: Exercises and review questions (65% of the final grade) (ILOs 1.e, 1.g, 1.h, 3.a, 3.b, 5.a, 5.b). - Data Analysis Project: Group project in which students select and analyze an interesting dataset using the tools learned in the course. Groups will present their work at the end of the course (35% of the final grade; optional) (ILOs 2.a, 2.c, 4,a, 5.c, 5.d). Notes: - For students who do not complete the project, the written exam will count for 100% of the final grade. - Project grades remain valid for one academic year.

Bewertungskriterien
Written exam: understanding of statistical concepts, correct interpretation of results of statistical analyses, clarity and precision of explanations. Data Analysis Project: Quality and clarity of the presentation, adequacy and appropriateness of analyses with respect to dataset characteristics

Pflichtliteratur

James, G., Witten, D., Hastie, T., Tibshirani, R. An Introduction to Statistical Learning with Applications in R. Springer, 2013. Freely available at http://www- bcf.usc.edu/~gareth/ISL/ 

Slides and lecture notes provided



Weiterführende Literatur

Bishop, C. M. (2006). Pattern recognition and machine learning. New York: Springer.

Agresti, A., Finlay, B. Statistica per le scienze sociali, Pearson, 2009. 

Hyndman, R.J. and Athanasopoulos, G. Forecasting: principles and practice, 2nd edition, OTexts: Melbourne, 2018. 

Cicchitelli, Giuseppe. Statistica. Principi e metodi. Pearson, 2008. 

Azzalini, Adelchi, and Bruno Scarpa. Data analysis and data mining: An introduction. OUP USA, 2012. 

Grigoletto, Matteo, Laura Ventura, and Francesco Pauli. Modello lineare: teoria e applicazioni con R. G Giappichelli Editore, 2017. 

Johnson, Richard A., and Dean W. Wichern. "Applied multivariate statistical analysis." New Jersey 405 (1992). 




Als PDF herunterladen

Ziele für nachhaltige Entwicklung
Diese Lehrtätigkeit trägt zur Erreichung der folgenden Ziele für nachhaltige Entwicklung bei.

3 8 10 13

Infoanfrage