Semester 1 · 73065 · Master in Computing for Data Science · 6KP · EN
Lehrende: Paola Lecca
Vorlesungsstunden: 40
Laboratoriumsstunden: 20
Anwesenheitpflicht: Generally, attendance is not compulsory but recommended. Non-attending students must contact the lecturer at the start of the course to agree on the modalities of the independent study.
The course includes topics from different disciplinary areas of mathematics that are unlikely to be contained in a single textbook. It is therefore advisable that the student follows the notes and the didactical material that the lecturer will make available at each lecture and laboratory.
The notes provided during the course can be deepened by referring to textbooks, as, for example:
Howie, John M., Real Analysis, Springer, 2001
Maurits Kaptein , Edwin van den Heuvel, Statistics for Data Scientists. An Introduction to Probability, Statistics, and Data Analysis, Springer 2022
Frederik Michel Dekking, Cornelis Kraaikamp, Hendrik Paul Lopuhaä, Ludolf Erwin Meester, A Modern Introduction to Probability and Statistics, Understanding Why and How, Springer 2005
James, E. Gentle, Matrix Algebra: Theory, Computations and Applications in Statistics (Springer Texts in Statistics) 2nd ed. 2017.
Subject Librarian: David Gebhardi, David.Gebhardi@unibz.it
Suggested by the lecturer during the course if needed.
Ziele für nachhaltige Entwicklung
Diese Lehrtätigkeit trägt zur Erreichung der folgenden Ziele für nachhaltige Entwicklung bei.