Semestre 1-2 · 27511 · Corso di laurea magistrale in Data Analytics for Economics and Management · 12CFU · EN
Docenti: Andreas Heinrich Hamel, Davide Ferrari, Giulia Bertagnolli
Ore didattica frontale: M1:
- 24 hours of in-person lectures
- 12 hours of video lectures (counted as 24 hours to account for re-watching)
M2:
- 24 hours of in-person lectures
12 hours of video lectures (counted as 24 hours to account for re-watching)
Ore di laboratorio: -
Obbligo di frequenza: Recommended, but not required.
M1:
Video lectures and slides provided during the course.
M2:
Lecture notes and selected readings from the following books:
Wikle, Christopher K., Andrew Zammit-Mangion, and Noel Cressie. Spatio-temporal statistics with R. Chapman and Hall/CRC, 2019.
Kolaczyk, Eric D., and Gábor Csárdi. Statistical analysis of network data with R. Vol. 65. New York: Springer, 2014.
M1:
Boyd/Vandenberghe, Convex Optimization,
Wright/Recht, Optimization for Data Analysis,
Sundaram, A First Course in Optimization Theory.
Semestre 1 · 27511A · Corso di laurea magistrale in Data Analytics for Economics and Management · 6CFU · EN
Docenti: Andreas Heinrich Hamel
Ore didattica frontale: - 24 hours of in-person lectures
- 12 hours of video lectures (counted as 24 hours to account for re-watching)
Ore di laboratorio: -
Video lectures and slides provided during the course.
Boyd/Vandenberghe, Convex Optimization,
Wright/Recht, Optimization for Data Analysis,
Sundaram, A First Course in Optimization Theory.
Semestre 2 · 27511B · Corso di laurea magistrale in Data Analytics for Economics and Management · 6CFU · EN
Docenti: Davide Ferrari, Giulia Bertagnolli
Ore didattica frontale: - 24 hours of in-person lectures
- 12 hours of video lectures (counted as 24 hours to account for re-watching)
Ore di laboratorio: -
Lecture notes and selected readings from the following books:
Wikle, Christopher K., Andrew Zammit-Mangion, and Noel Cressie. Spatio-temporal statistics with R. Chapman and Hall/CRC, 2019.
Kolaczyk, Eric D., and Gábor Csárdi. Statistical analysis of network data with R. Vol. 65. New York: Springer, 2014.